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Summary : The unitary evolution described by the Schrödinger equation and the
non-unitary evolution governed by the Schrödinger Bridge random process are shown
to be mathematically related. Indeed, these two types of evolution mix under nonli-
near gauge transformations of the wavefunctions introduced in this work. After such
a transformation the new wavefunction appears to obey again to both the above uni-
tary and non-unitary evolutions. The interpretation of this result is discussed but
remains an open question.

Nonlinear gauge transformations of the wavefunction are introduced in the non-
relativistic description of a free spinless particle of mass m. These transformations
constitute a one-parameter Lie group. For wavefunctions ψ(x) = ρ(x)1/2e

i
~ s(x) nor-

med to one, they only act on the argument s : s → s(α) = e−αs ; α ∈ R. These
transformations conserve the product ψψ∗ and keep invariant the following system
of equations for the wavefunction :

(0.1) i∂tψ = − ~
2m∇

2ψ

(0.2) i∂τψ = − ~
2m∇

2ψ + ~
m
ψ
∇2 | ψ |
| ψ |

The first equation is the Schrödinger equation which describes the unitary evo-
lution in time t. The second equation is nonlinear and describes the evolution of
ψ in a parameter τ that has temporal physical dimension but, a priori, is different
from time t. The invariance of the system (0.1), (0.2) under the nonlinear gauge
transformations is ensured provided the couple (t, τ) transforms in a hyperbolic
rotation :
(0.3) t(α) = cosh(α)t + sinh(α)τ

(0.4) τ(α) = sinh(α)t+ cosh(α)τ
Remarkably, the equation (0.2) can exactly be transformed into the so-called

Schrödinger Bridge random process that E.Schrödinger studied in 1931-1932 [1][2] :

(0.5) ∂τϕ = ~
2m∇

2ϕ

(0.6) ∂τφ = − ~
2m∇

2φ

These two equations, respectively, describe the forward and backward diffusive
evolution of a Brownian particle whose probability density is prescribed both at
the initial and final time. The functions of position and time ϕ and φ are not them-
selves probabilities but their product ϕφ is the probability density that interpolates
at intermediate times between the initial and final distributions. In his 1931 and
1932 papers, E.Schrödinger introduced this problem in an effort to understand the
origin of the Born rule in quantum mechanics. He, however, called his attempt a
fiasco because he did not find any connection between quantum mechanics and
the classical random process he had defined and studied. Here, we show that this
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is not the case : the two types of evolutions are tightly bound by the nonlinear
gauge transformations defined above. We also show that this mathematical relation
can be extended to interacting particles and, even, to quantum fields. A question
that remains open is its physical interpretation. Some arguments could relate the
Schrödinger Bridge evolution to the reduction of the wavefunction induced by a
measurement. However, this hypothesis remains to be substantiated.
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